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Quaternion quantum mechanics is examined at the level of unbrokenSU(2) gauge
symmetry. A general quaternionic phase expression is derived from formal properties
of the quaternion algebra.

1. QUATERNION QUANTUM MECHANICS

Quantum mechanics defined over general algebras have been conjectured
since 1934 (Jordanet al., 1934). The use of quaternions was suggested in a proper
manner by Birkoff and von Neumann in 1936, when they noted that the propo-
sitional calculus implies in a representation of pure states of a quantum system
by rays on a Hilbert space defined over any associative division algebra (Birkoff
and von Neumann, 1936). This means that quantum theory would be limited to
the real, complex and quaternion algebras. However, the spinor representations of
the rotation group requires the existence of solutions of quadratic algebraic equa-
tions related to the invariant operators, which are guaranteed only over a complex
algebra (Chevalley, 1955). The development of quaternion quantum mechanics
started with D. Finkelstein in 1959, its relativistic and particle aspects were stud-
ied by G. Emch and E. J. Schremp (Emch, 1963; Finkelstein, 1959; Finkelstein
et al., 1962, 1963; Schremp, 1967). A comprehensive reference list can be found
in Alder (1995).

In an attempt to interpret quaternion quantum mechanics, C. N. Yang sug-
gested that the isospinor symmetry should be contained, in the group of auto-
morphisms of the quaternion algebra (Finkelstein, 1959; Finkelsteinet al., 1962,
1963). This interpretation may be seen through the following argument: Suppose
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that the spin angular momentumEM associated with the spinor representations of
the SO(3) subgroup of the Lorentz group, and the isospin angular momentumEI
given by a representation of the groupSU(2), are both present in a single state.
These groups are isomorphic and their spinor representations are given by the
Pauli matrices acting separately on the spinor spaceM and the isospinor spaceI
respectively, generated by two complex spinor basis (1,i ) and (1, j ). The direct
sumM⊕ I does not close as an algebra, except if the productk = i j is introduced
producing a quaternion algebra, whose automorphisms becomes the carrier of the
combined spin–isospin symmetry.

According to this interpretation, quaternion quantum mechanics would be ef-
fective at the energy level in which spin and isospin symmetries remain combined.
In addition, when this combined symmetry breaks down at lower energies, we ex-
pect to recover two spin degrees of freedom (Emch and Jadczyk, 1998; Hazenfrantz
and ’t Hooft, 1976; Jackiw and Rebbi, 1976; Singleton, 1995; Vachaspati, 1997).

The existence and effectiveness of quaternion quantum mechanics at higher
energies must be experimentally verified. In one of the experiments proposed by
A. Peres, a neutron interferometer with thin plates made of materials with varying
proportions of neutrons and protons is used, where the phase difference in one
or another case is measured (Peres, 1979). This experiment can be adapted to a
variable beam intensity, so that in principle the phase difference of the complex
and the quaternion theories at different levels of energy could be detected.

Since quaternions keep a one-to-one correspondence with space–time vectors,
the quaternion phase can also be set in a one-to-one correspondence with a rotation
subgroup of the Lorentz group. In this sense, the geometric quaternion phase
is truly geometrical as compared with the geometric complex phase, which is
defined on a projective space (Berry, 1988). This space–time interpretation means
that the integration of the quaternionic quantum phase, along a closed loop in
space–time, can be associated with the space–time curvature, suggesting a quantum
gravitational effect.

Taking the quaternion wave function9 as a solution of Schr¨odinger’s equation
defined with an anti-Hermitian quaternionic Hamiltonian operatorH , then the
quaternionic dynamical phaseω can be described as∮

C
ω−1 dω = −

∫
C
〈9|H |9〉 dt (1)

where〈,〉 denotes the quaternionic Hilbert product. Adler and Anandan (1996)
have proposed a solution of this integral as given by

ω(t) = T exp

(
−
∫ t

0
〈9|H |9〉 dv

)
, (2)

whereT denotes a constant quaternion representing a time ordering factor.
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On the other hand, the geometric phase ˜ω is determined by∮
C
ω̃−1 dω̃ = −

∫
C

〈
9

∣∣∣∣ d9

dt

〉
dt, (3)

Again, according to Adler and Anandan (1996) this may be integrated to give the
following result

ω̃(t) = T exp

(
−
∫ t

0

〈
9

∣∣∣∣ d9

dv

〉
dv

)
. (4)

The question we address ourselves concerns with the generality of this solution
as represented by a Volterra integral combined with a fixed ordering factorT . We
shall see that the left-hand side of (3) has a more general solution expressed by the
imaginary quaternionic exponential function.

We start by examining the meaning and uniqueness of the quaternionic line
integral (3). Denoting a quaternion function of a quaternion variableX = Xα eα

in a quaternion basiseα by f (X) = Uα eα whereUα are real components, we may
define the left and right line integrals respectively by4∫

C
f (X) d X = eα eβ

∫
C

Uα dxβ ,
∫

C
d X f(X) = eβ eα

∫
C

Uα dxβ.

These integrals are not necessarily equal:∫
C

f (X) d X−
∫

C
d X f(X) =

∑
εi jk ek

∫
C

(Ui dxj −U j dxi ).

However, for a closed loopC, it is readily seen that this difference vanishes as a
consequence of Green’s theorem in the plane (i , j ). Therefore, the phase expression
in the left-hand side of (3) is uniquely defined.

To obtain a solution of (3) that is more general than (4) we need to understand
why it is important to be a division algebra.

2. HARMONIC FUNCTIONS

The division algebra condition|AB| = |A||B| is a basic requirement to per-
form the limit operations of products leading to the standard real and complex
mathematical analysis. In the complex case, the limit operation is independent
of the direction, leading to the Cauchy–Riemann equations. However, when we
attempt to extend the same definitions to the quaternion algebra, the generalized

4 Greek indices run from 0 to 3 and small Latin indices from 1 to 3. The quaternion multiplication table
is ei ej = −δi j +∑ εi jk ek, ei e0 = e0 ei = ei ande0 e0 = e0 = 1. Quaternion conjugate is denoted
with overbar:ēi = −ei , ē0 = e0. The quaternion norm is|X|2 = XX̄. The sum convention applies
throughout.
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Cauchy–Riemann conditions become so restrictive that only a few trivial func-
tions survive (see the appendix for a brief review) (Fueter, 1932, 1936, 1937;
Evanset al., 1992; Ferraro, 1938; Ketchum, 1928; Khaled Abdel-Khalek, 1996;
Nash and Joshi, 1987). The less restrictive harmonicity condition is (Evanset al.,
1992) ∑

δi j ∂2Uα

∂Xi ∂X j
+ ∂

2Uα

∂X2
0

= h2Uα = 0, (5)

Quaternion harmonicity can be easily implemented by the introduction of the
quaternionic slash differential operator6 ∂ =∑ eα ∂α =

∑
eα ∂/∂Xα, such that

h2 = 6 ∂ ¯6 ∂. This operator may act on the right and on the left of a quaternion
function f (X), giving

6 ∂ f (X) =
(
∂U0

∂X0
+
∑ ∂Ui

∂X0
ei

)
+
∑[

∂U0

∂Xi
ei −

∑ ∂Ui

∂X j
(δi j − ε i jk ek)

]
,

f (x)6 ∂ =
(
∂U0

∂X0
+
∑ ∂Ui

∂X0
ei

)
+
∑[

∂U0

∂Xi
ei −

∑ ∂Ui

∂X j
(δi j + ε i jk ek)

]
It is clear that6 ∂ f (X) 6= f (X)6 ∂, unless the condition

∂Ui

∂X j
= ∂U j

∂Xi
, (6)

holds. Three classes of harmonic functions may be defined:

a) The left harmonic functions, characterized by6 ∂ f (X) = 0

∂U0

∂X0
=
∑

i

∂Ui

∂Xi
,

∂Uk

∂X0
+ ∂U0

∂Xk
= −

∑
i j

ε i jk ∂Ui

∂X j
.

b) The right harmonic functions, such thatf (X)6 ∂ = 0

∂U0

∂X0
=
∑

i

∂Ui

∂Xi
,

∂Uk

∂X0
+ ∂U0

∂Xk
=
∑

i j

ε i jk ∂Ui

∂X j
.

c) The totally harmonic functions (or simply H functions), characterized by
6 ∂ f (X) = 0 and f (X)6 ∂ = 0

∂U0

∂X0
=
∑

i

∂Ui

∂Xi
,
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∂Ui

∂X0
= −∂U0

∂Xi
(7)

∂Ui

∂X j
= ∂U j

∂Xi
.

The functions belonging to these three classes satisfy the harmonic condition (5).
A nontrivial example of H function is given by an instanton expressed in

terms of quaternions (Atiah, 1979). The connection of an anti–self-dualSU(2)
gauge field is given by the form

0 =
∑
α

Aα(X) dxα, (8)

whereA0 =
∑

Uk ek, Ak = U0 ek −∑ εi jkUi ej and

U0 =
1
2 X0

1+ |X|2 , Ui =
− 1

2 Xi

1+ |X|2 ,

are the components of the quaternion functionf (X) = Uα eα. We can see thatf (X)
satisfy the conditions (7) in the region of space–time defined by

∑
X2

i = −2X0.
The above example is a particular case of a wider class of functions with

components

Uα = gα(X)/(1+ |X|2),

wheregα(X) are real functions.
Although (7) could be taken as the definition of quaternion analyticity, there

are some functions that are clearly analytic, such as a constant quaternion, which
does not satisfy those equations. Therefore, as it happens in the cases of real
and complex functions, an analytic quaternion function should be more generally
represented by a convergent positive power series, rather than by Eq. (7).

3. POWER SERIES

Given a quaternion functionf (X) defined on an orientable three-dimensional
hypersurfaceS with unit normal vectorη, we may define two hypersurface inte-
grals. ∫

S
f (X) dSη and

∫
S

dSη f (X),

where dSη =
∑

dSi ei denotes the quaternion hypersurface element with
components

dS0 = d X1 d X2 d X3, dS1 = d X0 d X2 d X3,

dS2 = d X0 d X1 d X3, dS3 = d X0 d X1 d X2.
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On the other hand, denoting bydv = d X0 d X1 d X2 d X3 the four-dimensional
volume element in a regionÄbounded byS, after integrating in one of the variables,
we obtain∫

Ä

6 ∂ f (X) dv =
∫
Ä

eα ∂α eβUβ dv

=
∫
Ä

[(
∂0U0−

∑
i

∂i Ui

)

+
∑

i

(∂0Ui + ∂i U0) ei + ε i jk ∂i U j ek

]
dv.

Noting that ∫
Ä

∂0U0 dv =
∫

S
U0 dS0,

∫
Ä

∂0Ui dv =
∫

S
Ui dS0,∫

Ä

∂i U0 dv =
∫

S
U0 dSi ,

∫
Ä

∂i U j dv =
∫

S
U j dSi ,

it follows that∫
Ä

6 ∂ f (X) dv =
∫

S

[(
U0 dS0−

∑
δi j Ui dSj

)
e0

+
∑

(Ui dS0+U0 dSi ) ei −
∑

ε i jkUi dSj ek

]
.

A straightforward calculation, shows that this is exactly the same expression of
the surface integral ∫

S
dSη f (X) =

∑∫
S

Uα dSβ eβ eα

Therefore, we obtain the result∫
Ä

6 ∂ f (X) dv =
∫

S
dSη f (X) (9)

Similary, for the left surface integral we have∫
Ä

f (X)6 ∂dv =
∫

S
f (X) dSη. (10)

These integrals are defined for any quaternion functions whose components are
integrable and their difference is∑

ε i jk ek
∫

S
(Ui dSj −U j dSi ) = −

∑
ε i jk ek

∫
Ä

(
∂Ui

∂X j
+ ∂U j

∂Xi

)
dv,
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The right-hand side is zero so that only one type of surface integral need to be
considered.

The following theorem extends the first Cauchy’s Theorem to quaternion
functions:

If f (X) satisfy(7) in the interior of a regionÄ bounded by a hypersurface
S then ∫

S
f (X) dSη =

∫
S

dSη f (X) = 0. (11)

This property follows immediately from Eqs. (9) and (10), and the conditions (7).
The second Cauchy’s theorem is also true for H functions:

If f (X) satisfy the conditions(7) in a region bounded by a simple closed three-
dimensional hupersurface S, then for a point P in S, we have

f (P) = 1

π2

∫
S

f (X)(X − P)−3 dSη. (12)

The proof is similar to the complex case: The integrand does not satisfy the con-
ditions (7) inÄ as it is not defined atP and consequently the previous theorem
does not apply. However the pointP may be isolated by a sphere with surfaceS0

with center atP and radiusε such that it remains insideÄ. Applying (11) to the
region bounded bySandS0 we obtain∫

S
f (X)(X − P)−3 dSη +

∫
S0

f (X)(X − P)−3 dSη = 0.

Now, the componentsUα may be assumed to be differentiable and regular so that
we may calculate their Taylor expansions aroundP:

Uα(X) = Uα(P)+ εβ ∂Uα

∂xβ

⌋
P

+ · · · .

Replacing this in the integral overS0 and taking the limitε → 0, it follows that

f (P) =
(∫

S
f (X)(X − P)−3 dSη

)(∫
S0

(X − P)−3 dSη

)−1

. (13)

In order to calculate the integral over the sphereS0 it is convenient to use four-
dimensional spherical coordinates (r, θ , φ, γ ), such thatX0 = r sinγ , X1 = r
cosγ sinθ cosφ, X2 = r cosγ sinθ sinφ, and X3 = r cosγ cosθ where θ ∈
(0,π ), φ ∈ (0, 2π ), γ ∈ (−π/2,π/2). The volume element in spherical coordi-
nates isdv = J dr dθ dφ dγ where J = −r 3cos2γ sinθ is the Jacobian
determinant.
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The unit normal to the spherical hypersurface centerd atP and with radiusε
can be written asη = (X − P)/ε so that (X − P)−3 = η̄3/ε3 and

−
∫

S0

(X − P)−3 dSη =
∫

S0

η̄2 cos2 γ sinθ dθ dφ dγ = π2.

After replacing in (13), we obtain the proposed result (12). Notice that the power
(−3) in (12) is not accidental as it is the right power required to cancel the
Jacobian determinant whenε → 0. Now we may prove the following general
result:

Let f(X) be such that it satisfies(7) inside a regionÄ bounded by a surface
S. Then for all X insideÄ there exists coefficients an such that

f (X) =
∞∑
0

an(X − Q)n. (14)

Again, the proof is a straightforward adaptation from the similar complex theorem:
If S0 is the largest sphere inÄ centered atQ, the integral (12) for a pointP = X
insideÄ gives

f (X) = 1

π2

∫
s

f (X′)(X′ − Q)−3[1− (X′ − Q)−1(X − Q)]−3 dS′η.

It is a simple matter to see that the particular functionf (X) = (1− X)−3, with
|X| < 1 can be expanded as

(1− X)−3 =
∞∑
1

n(n+ 1)

2
Xn−1 =

∞∑
m=0

(m+ 1)(m+ 2)

2
Xm. (15)

Assuming that|X − Q| < |X′ − Q| and using (15), the previously mentioned
integrand is equivalent to

[1− (X′ − Q)−1(X − Q)]−3 =
m=∞∑

0

(m+ 1)(m+ 2)

2
(X′ − Q)−m(X − Q)m,

so that

f (X) = 1

π2

∞∑
m=0

(m+ 1)(m+ 2)

2

∫
S0

f (X′)(X′ − Q)−3−m(X − Q)m dS′η.

Sinceη and (X − Q) are proportional, the expression given previously may be
written as

f (X) = 1

π2

∞∑
m=0

(m+ 1)(m+ 2)

2

∫
S0

f (X′)(X′ − Q)−3−m dS′η(X − Q)m,



P1: VENDOR/GEE/LZX/FTQ/GCO/GDP/ P2: GCQ/FNV QC:

International Journal of Theoretical Physics [ijtp] PP131-301580 May 18, 2001 10:59 Style file version Nov. 19th, 1999

Geometric Phase in Quaternionic Quantum Mechanics 1291

Defining the coefficients

am = 1

π2

(m+ 1)(m+ 2)

2

∫
S0

f (X′)(X′ − Q)−3−m dS′η, (16)

we obtain expression (14), showing that all functions satisfying (7) can also be
expressed as a convergent positive power series. The converse is not generally
true.

4. BACK TO PHASE

Now we may define a quaternion exponential function in terms of convergent
power series and in particular the pure imaginary quaternionic exponential to
represent the phase. Let us express the solution of (3) as the quaternionic ordered
exponential function defined by

ω̃ = P exp

(∫
C
ω̃−1 dω̃

)
To write this function, consider the quaternionX = X0 e0+∑ Xi ei . With the
last three components we may associate the three-vectorEξ , and a pure imaginary
quaternionξ such that|ξ |2 =∑ X2

i = Eξ · Eξ , where the dot means the Euclidean
scalar product. This vector is determined by three angles, which define a unit vector
Eϒ = Eξ/

√
Eξ · Eξ corresponding to the pure imaginary quaternionϒ = ξ/|ξ |, such

thatϒ2 = −1.
With this, we draw the Gauss plane withe0 in the real axis andϒ in a direction

orthogonal toe0. Then a quaternionX with modulus|X|, making an angleγ with
e0 may be expressed as

X = X0 e0+ Xi ei = |X|(e0 cosγ +ϒ sinγ ).

After replacing sinγ and cosγ by the respective power series expansions and
after rearranging the terms, we define the quaternion exponential P exp(ϒγ ) by
the series within the parenthesis, so that

P exp(ϒγ ) = X

|X|
Therefore, the most general integral of (3) may be expressed as the geometric
quaternion phase

ω̃ = P exp(ϒγ ) = cosγ +ϒ sinγ. (17)

Notice that in contrast to (4) there is no fixed directionT but rather the unit direction
ϒ that varies with the quantum states. Contrary to the complex phase, ˜ω acts over
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the quaternion wave functions as an inner automorphism

9 ′ = P exp(ϒγ )−19 P exp(ϒγ ) = ω̃−19ω̃,

Consequently, the quaternion phase is in fact distinct from the complex phase both
from the analytic point of view as well as from its geometric interpretation. In the
particular case where the vectorEϒ is fixed we obtain a solution equivalent to (4).

The overall conclusion is that in agreement with previous suggestions, quater-
nion quantum mechanics should be effective at the level of an unbrokenSU(2)
gauge symmetry. The quaternionic spinor operator transforms under the automor-
phism of the quaternion algebra, producing a distinct behavior on the phase of the
wave functions, as compared with the complex theory.

The neutron interferometry, experiment proposed by Peres (1979) can be
modified to accommodate the high-energy interpretation. Accordingly, we suggest
a variable beam experiment over plates made of the same material. A higher energy
beam should show a qualitative difference from the lower energy case, evidencing
the distinction between the quaternion and complex phases.

APPENDIX: BASIC QUATERNIONIC ANALYSIS

Taking a generic quaternion functionf (X) = Uα(X) eα, and denoting1 f =
[ f (X +1X)− f (X)], the left and right derivatives off (X) are defined respec-
tively by

f ′(X) = lim1X→0 δ f (X)(1X)−1,
′ f (X) = lim1X→0(1X)−11 f (X),

where the limits are taken with|1X| → 0 along the direction of the four-vector
1X which depends on the 3-dimensional vector1 EX. Following the same complex
procedure, take the derivatives along a fixed direction1X = 1Xβ eβ (no sum on
β), indicated by the index within parenthesis:

f ′(X)(β) = ∂U0

∂Xβ
e0(eβ)−1+

∑
i

∂Ui

∂Xβ
ei (eβ)−1,

′ f (X)(β) = ∂U0

∂Xβ
(eβ)−1 e0+

∑
i

∂Ui

∂Xβ
(eβ)−1 ei .

Straightforward calculation shows that

f ′(X)(0) = ′ f (X)(0),

f ′(X)( j ) = ′ f (X)( j ) − 2
∑
i ,k

ε i jk ∂Ui

∂X j
ek
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By imposing that these derivatives are selectively equal, four basic classes of
complex-like analytic functions can be obtained:

Right analytic Left analytic Left–right analytic Total analytic

f ′(X)(0) = f ′(X)(i )
′ f (X)(0) = ′ f (X)(i ) f ′(X)(α) = ′ f (X)β f ′(X)(α) = f ′(X)(β),

f ′(X)(i ) = f ′(X)( j )
′ f (X)(i ) = ′ f (X)( j )

′ f (X)(α) = ′ f (X)(α)
′ f (X)(α) = f ′(X)(α)

∂Uα
∂Xα

= ∂Uβ
∂Xβ

∂Uα
∂Xα

= ∂Uβ
∂Xβ

∂Uα
∂Xα

= ∂Uβ
∂Xβ

∂Uα
∂Xα

= ∂Uβ
∂Xβ

∂Ui

∂X0
= − ∂U0

∂Xi

∂Ui

∂X0
= − ∂U0

∂Xi

∂Ui

∂X j
= − ∂U j

∂Xi

∂Uα
∂Xβ

= 0 α 6= β
∂Ui

∂X j
=
∑

εi jk ∂Uk

∂X0

∂Ui

∂X j
= −

∑
εi jk ∂Uk

∂X0

∂Ui

∂X0
= − ∂U0

∂Xi

As we have mentioned these conditions are too restrictive for most applications,
including quantum mechanics.
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