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Geometric Phase in Quaternionic
Quantum Mechanics
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Quaternion quantum mechanics is examined at the level of unbr8k&g) gauge
symmetry. A general quaternionic phase expression is derived from formal properties
of the quaternion algebra.

1. QUATERNION QUANTUM MECHANICS

Quantum mechanics defined over general algebras have been conjectured
since 1934 (Jordaet al., 1934). The use of quaternions was suggested in a proper
manner by Birkoff and von Neumann in 1936, when they noted that the propo-
sitional calculus implies in a representation of pure states of a quantum system
by rays on a Hilbert space defined over any associative division algebra (Birkoff
and von Neumann, 1936). This means that quantum theory would be limited to
the real, complex and quaternion algebras. However, the spinor representations of
the rotation group requires the existence of solutions of quadratic algebraic equa-
tions related to the invariant operators, which are guaranteed only over a complex
algebra (Chevalley, 1955). The development of quaternion quantum mechanics
started with D. Finkelstein in 1959, its relativistic and particle aspects were stud-
ied by G. Emch and E. J. Schremp (Emch, 1963; Finkelstein, 1959; Finkelstein
etal, 1962, 1963; Schremp, 1967). A comprehensive reference list can be found
in Alder (1995).

In an attempt to interpret quaternion quantum mechanics, C. N. Yang sug-
gested that the isospinor symmetry should be contained, in the group of auto-
morphisms of the quaternion algebra (Finkelstein, 1959; Finkelsteah, 1962,

1963). This interpretation may be seen through the following argument: Suppose
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that the spin angular momentukh associated with the spinor representations of
the SQ(3) subgroup of the Lorentz group, and the isospin angular momehtum
given by a representation of the gro8p(2), are both present in a single state.
These groups are isomorphic and their spinor representations are given by the
Pauli matrices acting separately on the spinor splacand the isospinor spade
respectively, generated by two complex spinor basis)(@nd (1,j). The direct
sumM @ Z does not close as an algebra, except if the prokiecij isintroduced
producing a quaternion algebra, whose automorphisms becomes the carrier of the
combined spin—isospin symmetry.

According to this interpretation, quaternion guantum mechanics would be ef-
fective at the energy level in which spin and isospin symmetries remain combined.
In addition, when this combined symmetry breaks down at lower energies, we ex-
pectto recover two spin degrees of freedom (Emch and Jadczyk, 1998; Hazenfrantz
and 't Hooft, 1976; Jackiw and Rebbi, 1976; Singleton, 1995; Vachaspati, 1997).

The existence and effectiveness of quaternion quantum mechanics at higher
energies must be experimentally verified. In one of the experiments proposed by
A. Peres, a neutron interferometer with thin plates made of materials with varying
proportions of neutrons and protons is used, where the phase difference in one
or another case is measured (Peres, 1979). This experiment can be adapted to a
variable beam intensity, so that in principle the phase difference of the complex
and the quaternion theories at different levels of energy could be detected.

Since quaternions keep a one-to-one correspondence with space—time vectors,
the quaternion phase can also be setin a one-to-one correspondence with a rotation
subgroup of the Lorentz group. In this sense, the geometric quaternion phase
is truly geometrical as compared with the geometric complex phase, which is
defined on a projective space (Berry, 1988). This space—time interpretation means
that the integration of the quaternionic quantum phase, along a closed loop in
space—time, can be associated with the space—time curvature, suggesting a quantum
gravitational effect.

Taking the quaternion wave functidnas a solution of Scladinger’s equation
defined with an anti-Hermitian quaternionic Hamiltonian operatgrthen the
quaternionic dynamical phagecan be described as

fw*dw:—/(\mmw)dt (1)
C C

where (,) denotes the quaternionic Hilbert product. Adler and Anandan (1996)
have proposed a solution of this integral as given by

ot)=T exp(—/ot(\IJ|H|\I/)dv>, (2)

whereT denotes a constant quaternion representing a time ordering factor.
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On the other hand, the geometric phasis determined by

fca)—lda)z—/c<w Z—T >dt, 3)

Again, according to Adler and Anandan (1996) this may be integrated to give the

following result
. t dw
ot)=T exp(—f0 <\IJ W>dv). (4)

The question we address ourselves concerns with the generality of this solution
as represented by a Volterra integral combined with a fixed ordering facitve
shall see that the left-hand side of (3) has a more general solution expressed by the
imaginary quaternionic exponential function.

We start by examining the meaning and uniqueness of the quaternionic line
integral (3). Denoting a quaternion function of a quaternion variable X, &
in a quaternion basi by f (X) = U, € whereU, are real components, we may
define the left and right line integrals respectively by

/Cf(X)dxze“eﬁ/Cuadxﬂ, fcdx f(X):eﬂe“fCUadxﬂ.

These integrals are not necessarily equal:

/Cf(x)dX—/CdX f(X)zzajkek/c(uidxj —U; dx).

However, for a closed loo@, it is readily seen that this difference vanishes as a
consequence of Green’s theorem in the plang(Therefore, the phase expression
in the left-hand side of (3) is uniquely defined.

To obtain a solution of (3) that is more general than (4) we need to understand
why it is important to be a division algebra.

2. HARMONIC FUNCTIONS

The division algebra conditiopAB| = | A||B| is a basic requirement to per-
form the limit operations of products leading to the standard real and complex
mathematical analysis. In the complex case, the limit operation is independent
of the direction, leading to the Cauchy—Riemann equations. However, when we
attempt to extend the same definitions to the quaternion algebra, the generalized

4 Greek indices run from 0 to 3 and small Latin indices from 1 to 3. The quaternion multiplication table
isd el =41 + Y elikek d e =ePe =& ande” e = € = 1. Quaternion conjugate is denoted
with overbar:@ = —d, & = €. The quaternion norm iX|2 = X X. The sum convention applies
throughout.
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Cauchy—Riemann conditions become so restrictive that only a few trivial func-
tions survive (see the appendix for a brief review) (Fueter, 1932, 1936, 1937,
Evanset al, 1992; Ferraro, 1938; Ketchum, 1928; Khaled Abdel-Khalek, 1996;
Nash and Joshi, 1987). The less restrictive harmonicity condition is (Eetaais
1992)

32u
s'l = [?U, =0, 5
Z ax. axJ IXZ ©)

Quaternion harmonicity can be easily implemented by the introduction of the
quaternionic slash differential operatgr=>_e* 3, = )_ € 3/dX,, such that

002 = 7 3. This operator may act on the right and on the left of a quaternion
function f (X), giving

AE(X) = (8U0+ZBU' i) Z[B_UO ZBU'(SIJ_eiJke")],
f02 = (3U°+Z§—)L2)ei)+2[gt’(°e Zau'(8”+e”k k)]

Itis clear thatg f (X) # f(X) g, unless the condition
Uy Uy,
X = (6)
aX; 93X

holds. Three classes of harmonic functions may be defined:

a) The left harmonic functions, characterized ¥y (X) =
aUp ay;
IXo Z X’
%o Xk Zj:e 0x;”
b) The right harmonic functions, such thgtX) g = 0
8U0 _ Z 8U|
0 Xo - i X'
Wi | 9o _ 5 e 29
BXO 3 Xk g X

¢) The totally harmonic functions (or simply H functions), characterized by
AF(X)=0andf(X)4 =0

aUp aU;
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R ™)
aXo 9%

aU; _ oU;

aX; X

The functions belonging to these three classes satisfy the harmonic condition (5).

A nontrivial example of H function is given by an instanton expressed in
terms of quaternions (Atiah, 1979). The connection of an anti—self-BU§P)
gauge field is given by the form

r :ZA"‘(X)an’ (8)
whereAp = ZUK ek, A = erk — Zéijkui el and
1o ~ix
Uo = 7 i =T
1+ |X] 1+ [X]

are the components of the quaternion functigiX) = U, *. We can see thdt(X)
satisfy the conditions (7) in the region of space—time defined o2 = —2Xo.

The above example is a particular case of a wider class of functions with
components

Ue = Gu(X)/(1+X]?),

whereg, (X) are real functions.

Although (7) could be taken as the definition of quaternion analyticity, there
are some functions that are clearly analytic, such as a constant quaternion, which
does not satisfy those equations. Therefore, as it happens in the cases of real
and complex functions, an analytic quaternion function should be more generally
represented by a convergent positive power series, rather than by Eq. (7).

3. POWER SERIES

Given a quaternion functiof(X) defined on an orientable three-dimensional
hypersurfaces with unit normal vector, we may define two hypersurface inte-
grals.

/f(X)dSﬁ and /dSﬁ f(X),
S S
where dS, =Y dS¢€ denotes the quaternion hypersurface element with
components
dS =dX;dXod X3, dS =dXodX,dXs,
dS = dXedX;dXs, dS =dXedX;dXs.
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On the other hand, denoting v = d Xod X; d X, d X3 the four-dimensional
volume elementin aregiadR bounded bys, afterintegrating in one of the variables,
we obtain

Lﬁf(X)dv:/ﬂe‘” 3. €Ug dv

s )

+> (Ui + 8Uo) € + €% 51U, ek] dv
i
Noting that

/a()UodV:/UodS), /aoUi dV:fUidSJ,
Q S Q S
/aiUOdV=/UodS, /3in dV=/Ude,
Q S Q S

it follows that
— _ i 0
fﬂﬁf(X)dv_fSKuodso P u.ds)e

+ ) (UidS+UedS) € — ) kUi ds ek].

A straightforward calculation, shows that this is exactly the same expression of
the surface integral

/Sds, f(X):ZLUadsgeﬁe“

Therefore, we obtain the result

/ﬂf(X)dv:/d& f(X) 9)
Q S
Similary, for the left surface integral we have
/f(X)ﬂdv=/f(X)dS,. (10)
Q S

These integrals are defined for any quaternion functions whose components are
integrable and their difference is

) Ui ay;
Ze.]k ek/S(UidS_UidS)z ”kek/ <8X, )dV,
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The right-hand side is zero so that only one type of surface integral need to be
considered.

The following theorem extends the first Cauchy’s Theorem to quaternion
functions:

If f(X) satisfy(7) in the interior of a regionQ2 bounded by a hypersurface
S then

/f(X)dqudeﬂ(X):O. (11)
S S
This property follows immediately from Eqgs. (9) and (10), and the conditions (7).

The second Cauchy’s theorem is also true for H functions:

If f(X) satisfy the condition&) in a region bounded by a simple closed three-
dimensional hupersurface S, then for a point P in S, we have

f(P) = n—lzfsf(xxx — P)3ds,. (12)

The proof is similar to the complex case: The integrand does not satisfy the con-
ditions (7) inQ as it is not defined aP and consequently the previous theorem
does not apply. However the poiRtmay be isolated by a sphere with surfage

with center atP and radius such that it remains insid@. Applying (11) to the
region bounded by and S we obtain

/f(X)(X—P)‘3dS,+/ f(X)(X — P)~2dS, =0.
S S

Now, the componentd, may be assumed to be differentiable and regular so that
we may calculate their Taylor expansions arotéhd

ou
UaX =Uo¢P B ad
(X) = Ua(P) + € aXﬁJP+

Replacing this in the integral ov& and taking the limit — 0, it follows that

f(P) = (/S f(X)(X — P)‘3d57><[50(x — P)‘3d37>_1. (13)

In order to calculate the integral over the sph&et is convenient to use four-
dimensional spherical coordinates 4, ¢, y), such thatXo =r siny, X; =r
cosy sing cosg, X, =r cosy sing sing, and Xz =r cosy cosh where 6 €
0,7), ¢ € (0, 21), y € (—7/2,7/2). The volume element in spherical coordi-
nates isdv=J dr dd d¢ dy where J = —r3cogy sind is the Jacobian
determinant.



1290 Maia and Bezerra

The unit normal to the spherical hypersurface centefél and with radius:
can be written ag = (X — P)/e so that X — P)~3 = 5%/e% and

- [[x=Py2ds = [ iPcodysing do o dy =2
S S

After replacing in (13), we obtain the proposed result (12). Notice that the power
(—=3) in (12) is not accidental as it is the right power required to cancel the
Jacobian determinant when— 0. Now we may prove the following general
result:

Let f(X) be such that it satisfie@) inside a region©2 bounded by a surface
S. Then for all X insid&2 there exists coefficients auch that

F(X)=> a(X - Q" (14)
0

Again, the proofis a straightforward adaptation from the similar complex theorem:
If S is the largest sphere @ centered aQ), the integral (12) for a poinP = X
insideQ gives

100 = 5 [ 1000 = Q1 - (X~ QHx - QI s,

It is a simple matter to see that the particular functiofX) = (1 — X)~3, with
|X| < 1 can be expanded as

1-x)3= (15)

Enn+1) ., S (ME)Mm+2)
LT Xmr T

Assuming thatjX — Q| < | X’ — Q| and using (15), the previously mentioned

integrand is equivalent to

(m+nm+a
Z

1-(X-Q'X-QI°=) —F——X-Q"X-Qm,

so that

00 =15 3 I [0 - @m0 o,

Sincen and (X — Q) are proportional, the expression given previously may be
written as

F(X) = ZW/HX)(X’ Q) mdS (X — Q,
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Defining the coefficients

1 (m+1)(m+2) Ny 3
— 2 o - @ rds, as)
/g 2 )

we obtain expression (14), showing that all functions satisfying (7) can also be
expressed as a convergent positive power series. The converse is not generally
true.

4. BACK TO PHASE

Now we may define a quaternion exponential function in terms of convergent
power series and in particular the pure imaginary quaternionic exponential to
represent the phase. Let us express the solution of (3) as the quaternionic ordered
exponential function defined by

&= Pexp(/ ot d@)
C

To write this function, consider the quaterniodh= Xq go + 3 X; €. With the

last three components we may associate the three-vigcémd a pure imaginary
quaterniorg such thatg|? = > Xi2 = § . § where the dot means the Euclidean
scalar product. This vector is determined by three angles, which define a unit vector

Y = £/,/ - £ corresponding to the pure imaginary quatermior= & /||, such

thatr? = —1.

With this, we draw the Gauss plane wihin the real axis and" in a direction
orthogonal tae®. Then a quaterniod with modulus| X |, making an angle: with
€’ may be expressed as

X = Xo € + X; € = |X|(e°cosy + Y siny).

After replacing siry and cos by the respective power series expansions and
after rearranging the terms, we define the quaternion exponential P Xy
the series within the parenthesis, so that

X
Pexp(Yy) = X

Therefore, the most general integral of (3) may be expressed as the geometric
guaternion phase

@ = Pexp(ry) = cosy + Y siny. a7

Notice thatin contrastto (4) there is no fixed directiohut rather the unit direction
T that varies with the quantum states. Contrary to the complex phaszs dver
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the quaternion wave functions as an inner automorphism
U = Pexp(ry) v Pexp(Yy) = & 1ua,

Consequently, the quaternion phase is in fact distinct from the complex phase both
from the analytic point of view as well as from its geometric interpretation. In the
particular case where the vectoris fixed we obtain a solution equivalent to (4).

The overall conclusion is that in agreement with previous suggestions, quater-
nion quantum mechanics should be effective at the level of an unbiskip)
gauge symmetry. The quaternionic spinor operator transforms under the automor-
phism of the quaternion algebra, producing a distinct behavior on the phase of the
wave functions, as compared with the complex theory.

The neutron interferometry, experiment proposed by Peres (1979) can be
modified to accommodate the high-energy interpretation. Accordingly, we suggest
avariable beam experiment over plates made of the same material. A higher energy
beam should show a qualitative difference from the lower energy case, evidencing
the distinction between the quaternion and complex phases.

APPENDIX: BASIC QUATERNIONIC ANALYSIS

Taking a generic quaternion functidr{ X) = U, (X) €%, and denoting\ f =
[f(X+ AX) — f(X)], the left and right derivatives of (X) are defined respec-
tively by

f/(X) = limax_08 f(X)(AX)™,
"£(X) = limaxoo(AX) LA £(X),

where the limits are taken withh X| — 0 along }he direction of the four-vector
A X which depends on the 3-dimensional veatoX. Following the same complex
procedure, take the derivatives along a fixed directioh= AX; €® (no sum on
B), indicated by the index within parenthesis:

f/(X)(ﬁ) _ g)l':z O(eﬂ) 1+Z aUI |(eﬂ)—l,

(X)) = 8U"(eﬂ‘) RSOV i @)t

Straightforward calculation shows that
(X)) =" (X)),

ay;
f (X)(J) = f(X)(]) — ZZEHK ! k

X
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By imposing that these derivatives are selectively equal, four basic classes of
complex-like analytic functions can be obtained:

Right analytic Left analytic Left—right analytic Total analytic
(X)) = T'(X)q) "t (X)) =" T (X)) (X)) = "T(X)p (X)) = F'(X)p),
(X)) = /(X)) "X = "F(X)) "T(X)@ ="T(X)@

"T(X)@) = (X))
U, 8Up U, _ 9Up 0Us _ 9Up U, _ 9Up
Xy IXgp Xy IXgp Xy X e IXg
L L TR Ty
dXo X 0 Xo X X X aXp
aU; _ ijk Uk aU; _ ijk Uk aU; _ dUp
X, =2 % o) 2N % T %

As we have mentioned these conditions are too restrictive for most applications,
including quantum mechanics.
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